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Accelerator Energy and Magnetic Field
  

F = q •v • B = mv2 / ρ

p = q • ρ • B
P [TeV/c] = 0.3 • ρ [km] • B[Tesla]
Large Radius and High Field 
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Dipole Magnets from 3 to 9 T
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LHC Twin Aperture Dipoles

• Twin aperture:  space saving, cost saving, 
(First proposed by John Blewett (BNL)) 
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High Field Gradient Quadrupoles at Beam 
Interaction Regions

Low-β Quadrupoles

Inner TripletInner Triplet
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SC Accelerators and Dipole Field

LHC (8.3 T)
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Comments

• Note the small size of the Tevatron magnet!
Scaling up the field and gradient in cold iron 

magnets will make them large and heavy.
We should not exclude a return to warm iron, 

or a combination of warm and cold iron
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Dipole and Quadrupole Field 
Generated by Current Distribution

• A cylindrical cos nθ current distribution, where θ = azimuthal 
angle (as also given by superimposed ellipses) provides 
– Dipole (n = 1),  quadrupole (n = 2) and Higher Order Multipole Fields 
– High current density is essentially required for higher field
– Very precise field quality (dB/B < 10-4) required for beam handling 
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Cosθ and Cos2θ Coil Designs
• Most superconducting particle accelerator magnets rely on saddle-

shaped coils, which, in their long straight section, approximate cosθ or 
cos2θ distributions of the conductor

dipole quadrupole

Saddle-shaped coil 
assembly 

for dipole magnets
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Comment

• Intersecting ellipses    < - >    block design
• Cosθ distribution < - >   cosθ design

• Stress map in the block design appears to 
favor this geometry for very high fields and 
modest aperture
– need to know 

stress sensitivity vs. background field
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Status of NbTi Magnets

• Jc (NbTi) achieved
– ~  3 kA/mm2 @ 5 K, 4.2 K, 

• Engineering coil current density 
– 300 ~ 500  A/mm2

• State-of-the-art design: Cos θ and cold iron 
• Magnetic field that can be reached 

– ~ 7 T at 4.2 K 
– ~ 9 T at 1.9 K   (present practical limit)
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Progress in NbTi and NB3Sn Conductor 
for Accelerator Applications

Performance of 0.8 mm dia wire
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Progress in Accelerator Dipoles

10.1Cos θ (56 mm) NbTiCERN (1.9 K)

10.4
~7
6.5
5.6
5.5
4.5

Coil Field

10.3Cos θ (50 mm)NbTiKEK (1.9 K)

4.4Cos θNbTiTevatron

9.6Cos θ (88 mm)NbTiCERN (1.9 K)

10.5Cos θ (56 mm)NbTiLHC (1.9 K)

9.4Block NbTiKEK (1.9 K)
6.6Cos θ (50 mm)NbTiSSC (50 mm)
6.5BlockNbTiTexas A&M
4.7Cos θNbTiHERA

3.5Cos θNbTiRHIC

Bore FieldCoil Config.Coil Config. Dipole 



14

KEK NbTi Block Dipole

• Peak field 10.4 T. 
• Central field 9.4 T

T. Shintomi, M. Wake, K. Tsuchiya, H. Hirabayashi et al., (1985)
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Comment

• Block design with turned-up ends is not new



16

Progress of Nb3Sn Dipoles

LBNL(HD-1)

• R. Hafalia et al., IEEE Trans. Vol. 12, No. 1 (2002) 47 (MT-17) 
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Looking to the Future

• Nb3Sn magnets for
– LHC Luminosity Upgrade

• Large Aperture, high gradient Quadrupoles
– Future Energy Frontier beyond LHC 

• HTS for future possibilities, 
– High intensity machine 

• Muon colliders and neutrino factories 
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IRQ Upgrade Design Study
at LBNL

•• coscos θθ design
- 90 mm bore,  1.9 K 

Four layers – fully 
keystoned Nb3Sn Cable

Gss=265 T/m

by       et al., WAAP, March 2003 
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Why not other currents? Studies at Fermilab

Shell type dipole coil:
o Single-layer
o 45 mm bore with vertical ellipticity;
o 11-12 T  at Jc(12T)=3kA/mm2

o 90-100 kA
o Field quality within 10-5

o Same coil volume as 2-layer coil

Block type dipole coil:
o Single-layer design with minimum turns 
o 45 mm bore
o 11-12 T field at Jc(12T)=3kA/mm2

o 100-110 kA 
o Field quality within 10-5

o Suitable for common coil design
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Comment

• There is no magic in 10 – 20 kA
We must not confine ourselves to this current 

just because the test set up suits it – the cost 
of a new test set up would not be excessive
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• Simple 2-d geometry 
– with large bend radius 

• Conductor friendly
– no complex 3-d ends

• Compact
– quadrupole type cross-section

• Block design
– Simpler handling large Lorentz forces 

• Combined function magnets 
– possible

• Efficient
– Methodical R&D
– Simple & modular design

• Minimum requirements 
– on expensive tooling and extensive labor

• Lower cost magnets expected

Beam #1

Coil #1

Coil #2
Main Coils of the Common Coil Design

Beam #2

Common Coil Design

Ramesh Gupta, BNL 
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Comment

• The common coil design, though elegant, does 
not appear to be the best for very high field
– Side-by-side is more convenient for twin aperture
– Forces are more difficult to handle than in      side-

by-side block design
– Peak field on conductor is higher
– Field quality is harder to obtain
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Are there other ideas out there?

This is a unique moment in time to think outside the box
• Example: how about combined function magnets?             

This was studied for LHC: interesting, but too late. 
Idea is now applied to J-PARC superconducting beam 
line for neutrino experiments (KEK-JAERI)

• Can be cost effective  
– Only one type of magnet to develop

• Higher energy for given tunnel length/diameter
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Combined Function 
Superconducting Magnets

• Can be cost effective  
– Only one type of magnet to develop

• Higher energy for given tunnel length/diameter
• Example: J-PARC superconducting beam line for 

neutrino experiments at KEK-JAERI
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Concept of Combined
Dipole Field with Quadrupole
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KEK/BNL 2D & End Electromagnetic Design 
(ROXIE optimization)

Acknowledge to ROXIE S. Russenschuck et al)  to make the design possible

• B =  2.6 T
• G = 18.5 T/m
• I = ~7kA
• L = ~15mH
• Quality <10-3

@ 5 cm
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Can some Features of Detector 
Magnets be imported?

• Al-stabilized superconducting coils
• Indirect cooling, forced flow 2-phase 

helium or thermo-siphon cooling
• Quench propagation strips of pure Al
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Progress of Al-stabilized SC
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Roles of Aluminum Stabilizer
• Stabilizer for Superconductor

– Low Resistivity 
• Energy absorber with Joule Heating  in case of 

quench
– Large heat capacity / mass

• Transparency / Light weight
– Low Z, and low density

High-Strength Aluminum Stabilizer 
has been developed   

Can we find a use for it? 
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Electrical and Thermal 
Characteristics of Aluminum

Aluminum can provide a very wide range characteristics ,
depending on the purity (or RRR) 

Eletctical 
Resistivity

Thermal
Conductivity

Al (RRR=1000)

Cu (RRR= 100)
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Fast Quench Propagation
by using pure-Al Strips

Circumferential Velocity:
Vφ = (J/γC) ･ {L0Ts/(Tc-To)}1/2

Axial Velocity:
Vz= (kz/kφ)1/2･vφ

To improve Z propagation;
Axial Pure Al-strip useful  !!

Axial Pure-Al strip useful to homogenize Coil temperature 
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Conclusion
• NbTi Accelerator magnets @ 1.9 K well established
• Nb3Sn magnets expected for beyond 10 T  
• Nb3Sn dipole has achieved  > 15 T at LBNL
Future
• Is warm iron worth revisiting?
• Block vs. cos θ debate: see “stress map” in the winding…
• Why 10 – 20 kA? Why not 5 kA or 50 – 100 kA?
• Combined function design?
• Can we make use of high-strength aluminum stabilizer? 

(from Large Scale Detector Magnet R&D ) ~200 MPa 
• Can we make use of pure Al “drains” ?
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